
A FEJEZET TARTALMÁBÓL:

3. fejezet

Bevezetés
a Javába

» Bemutatjuk a Helló, világ!
programot

» Megismerjük a Java-programok
alapelemeit

» Megjegyzéseket adunk
a programokhoz

» Elsajátítjuk az objektumorientált
programozás alapvető ismereteit

» Megismerjük az osztályok
importálásának módszereit

Ebben a fejezetben a Java-programok írásának legalapve-

tőbb elemeit találod. Az itt látható programok nagyon

fapadosak: egyszerű információkat jelenítenek meg egy

konzolon vagy egy windowsos parancsablakban. Még néhány

fejezetet fel kell dolgoznod, mielőtt olyan programokat írsz,

amelyek bármi érdemlegeset csinálnak. De az ebben a fejezet-

ben látott egyszerű programok elegendőek a Java-programok

alapvető felépítésének szemléltetésére.

Figyelmeztetünk, hogy ebben a fejezetben számos olyan

Java-programozási funkciót mutatunk be, amelyeket a későb-

bi fejezetekben részletesebben is ismertetünk. Láthatsz pél-

dául néhány változódeklarációt, metódust, sőt még if utasí-

tást és for ciklust is. Ennek a fejezetnek nem az a célja, hogy

azonnali jártasságra tegyél szert ezekkel a programozási ele-

mekkel, csupán az, hogy megismertessen velük.

22 JAVA TUDÁSTÁR

A híres Helló, világ! program
Sok programozási könyv egy egyszerű példaprogrammal kez-

dődik, amely a Helló, világ! szöveget jeleníti meg a kimenet-

ben. A 3.1. kód egy ilyen Java-programot mutat be.

3.1. KÓD A Helló, világ! program

A fejezet későbbi részében részletesen megismerheted a

program minden elemét, de előbb szóról szóra végigvezetünk

rajta.

Az 1. és 2. sor egy nyilvános osztály deklarációját jelöli, mely-

nek neve HelloApp:

public: A Java nyelv egyik kulcsszava. Azt jelzi, hogy a

következő elem elérhető más Java-elemek számára. Eb-

ben az esetben a következő elem egy HelloApp nevű osz-

tály. Tehát ez a kulcsszó azt jelzi, hogy a HelloApp osztály

egy nyilvános osztály, ami azt jelenti, hogy más osztályok

is használhatják.

class: Egy másik Java-kulcsszó. Azt jelzi, hogy az itt defi-

niált elem egy osztály. Minden Java-program egy vagy

több osztályból áll. Egy osztálydefiníció olyan kódot tar-

talmaz, amely meghatározza a program által létrehozott

és használt objektumok viselkedését. Bár a legtöbb valós

program egynél több osztályból áll, az ebben a fejezet-

ben bemutatott egyszerű programok csak egy osztályt

tartalmaznak.

23 3. fejezet: Bevezetés a Javába

HelloApp: Az itt definiált osztályt azonosító név. Míg a

kulcsszavak – mint például a public és a class – a Java

nyelv által meghatározott szavak, a nevek olyan szavak,

amelyeket a programban használt különböző elemek azo-

nosítására hozunk létre. Ebben az esetben a HelloApp név

az itt definiálandó nyilvános osztályt azonosítja. (Bár a

név a technikailag helyes kifejezés, néha a neveket azono-
sítóknak is mondjuk. A név egyfajta azonosító, de nem

minden azonosító név).

{: A 2. sorban lévő nyitó kapcsos zárójel az osztály tör-
zsének (body) kezdetét jelöli. A törzs végét a 7. sorban

lévő kapcsos zárójel jelzi. Minden, ami ezeken a záró-

jeleken belül megjelenik, az osztályhoz tartozik. Ahogy

a Javá val dolgozol, tapasztalni fogod majd, hogy milyen

gyakran használod ezeket a zárójeleket.

A 3–6. sorok a HelloApp osztály main metódusát definiálják:

public: Ismét ezt a kulcsszót használjuk, ezúttal annak

jelzésére, hogy az itt definiált metódusnak nyilvános hoz-

záféréssel kell rendelkeznie. Ez azt jelenti, hogy a Hello-
App osztályon kívül más osztályok is használhatják. Min-

den Java-programnak rendelkeznie kell egy olyan osztály-

lyal, amely definiál egy main nevű nyilvános metódust. A

main metódus tartalmazza azokat az utasításokat, ame-

lyek a program futásakor végrehajtódnak.

static: A Java nyelv megköveteli a static kulcsszó meg-

adását a main metódus definiálásakor.

void: A Javában a metódus olyan kódegység, amely képes

értéket kiszámítani és visszaadni. Létrehozhatsz például

egy olyan metódust, amely kiszámítja az eladások végösz-

szegét. Ekkor ez az összeg a metódus visszatérési értéke.

Ha egy metódusnak nem kell értéket visszaadnia, akkor

ezt a void kulcsszóval kell jelezned. Mivel a Java megkö-

veteli, hogy a main metódus ne adjon vissza értéket, an-

nak definiálásakor meg kell adnod a void kifejezést.

24 JAVA TUDÁSTÁR

main: Végül itt van az az azonosító, amely a metódus ne-

vét adja. Mint már említettük, a Java megköveteli, hogy

a metódus neve main legyen. A main metóduson kívül to-

vábbi metódusokat hozhatsz létre bármilyen névvel. A

metódusok létrehozásának módját a 8. fejezetben ismer-

heted meg. Addig a programjaink csak egy main nevű me-

tódusból állnak.

(String[] args): Hát, ez a Java-elem túlságosan fejlett

ahhoz, hogy most el tudjuk magyarázni. Paraméterlistá-
nak hívják, és arra való, hogy adatokat adjunk át egy me-

tódusnak. A Java megköveteli, hogy a main metódus

egyetlen paramétert kapjon, amely egy String objektu-

mokból álló tömb. Konvenció szerint ezt a paramétert

args- nak nevezzük. Ha nem tudod, mi az a paraméter, a

String vagy a tömb, ne aggódj emiatt. A Stringről a követ-

kező fejezetben, a paraméterekről a 8. fejezetben, a töm-

bökről pedig a 12. fejezetben olvashatsz. Addig is vedd

észre, hogy minden programban a main metódusok defi-

niálásánál beírjuk, hogy (String[] args).

{: A 4. sorban egy újabb kapcsos zárójelpár kezdődik és a

6. sorban végződik. Ezek a zárójelek a main metódus tör-

zsét jelölik. Figyeld meg, hogy a 6. sorban lévő záró záró-

jel a 4. sorban lévő nyitó zárójelhez van párosítva, míg a

7. sorban lévő zárójel a 2. sorban lévő zárójelhez tarto-

zik. Ez a fajta párosítás a Javában általános. Röviden,

amikor a Java egy záró zárójelhez ér, akkor azt a legutol-

só olyan nyitó zárójelhez párosítja, amelyet még nem zár-

tunk be – vagyis amely még nem volt párosítva más záró

zárójellel.

System.out.println("Helló, világ!");: Ez az egyetlen

utasítás az egész programban. Egy println nevű metó-

dust hív meg, amely a System.out objektumhoz tartozik.

A println metódus egy sornyi szöveget jelenít meg a

konzolon. A megjelenítendő szöveget a println metódus-

nak paraméterként adjuk át a println szót követő kerek

zárójelek között. Ebben az esetben a szöveg az idézőjelek

25 3. fejezet: Bevezetés a Javába

közé zárt Helló, világ! karakterlánc. Ennek eredménye-

képpen ez az utasítás a konzolon a Helló, világ! szöve-

get jeleníti meg.

Jegyezd meg, hogy a Javában a legtöbb (de nem minden)

utasításnak pontosvesszővel kell végződnie. Mivel ez az

egyetlen utasítás a programban, ez a sor az egyetlen,

amelyet pontosvessző zár.

}: A 6. sorban lévő záró kapcsos zárójel zárja a main metó-

dus törzsét, amelyet a 4. sorban lévő zárójel nyitott meg.

}: A 7. sorban lévő záró kapcsos zárójel zárja a HelloApp

osztály törzsét, amelyet a 2. sorban lévő zárójel nyitott

meg. Mivel ez a program csak egy osztályból áll, ez a sor

egyben a program végét is jelzi.

A program futtatásához először egy szövegszerkesztővel, pél-

dául a Note pad++ vagy a TextPad segítségével meg kell írni a

programot – pontosan úgy, ahogy a 3.1. kódban szerepel –

egy HelloApp.java nevű szövegfájlban. Ezután le kell fordítani

a következő parancs futtatásával a parancssorban (lásd a 13.

fejezetet):

javac HelloApp.java

Ez a parancs létrehoz egy HelloApp.class nevű osztályfájlt,

amely tartalmazza a HelloApp osztályhoz lefordított Java-bájt-

kódot.

A programot a következő parancs megadásával futtathatod:

java HelloApp

Most, hogy már láttad, hogyan is néz ki egy Java-program,

jobban megértheted, pontosan mit is csinál ez a parancs. Elő-

ször is betölti a Java Virtual Machine-t (JVM) a memóriába.

Ezután megkeresi a HelloApp osztályt a HelloApp.class nevű

fájlban, majd lefuttatja a HelloApp osztály main metódusát,

amely megjeleníti a Helló, világ! üzenetet a konzolon.

